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dramatically enhance robustness. An adaptive control strategy, whildirese concepts will be made concrete and accurate in the subsequent
utilizes least-mean-squares identification, certainty equivalence prinsections. In each of these cases we will focus on deriving lower bounds
ples, and optimal disturbance attenuation, is investigated for its achiew-the optimal disturbance attenuation

able performance bounds. The results indicate that intimate interaction . 5

and inherent conflict between identification and control result in a cer- m= {il(ltf)} up By (t).

tain performance lower bound which does not approach the nominal B o )

performance even when the system varies very slowly. This finding,For @ random procesis:(t), ¢ > 0}, the simplified notation: =
somehow surprising, is a clear indication that information acquisitio%”(t)} = {a(t), t > 0} will often be used.

and processing are indeed inherently intertwined. Explicit and tighter

lower bounds are obtained when disturbances are either normally or [ll. NOMINAL PERFORMANCE

uniformly distributed. _ If a(t) can be directly and accurately measured prior to designing
Deriving optimal or lower bounds on system performance in thge control action:(¢), then there is no uncertainty on the system pa-

presence of uncertainty is one of the main thrusts in information apgyeters and the optimal control can be trivially obtained @3 =

complexity based theory of feedback, identification and adaptation,, +), (¢ — 1). The corresponding optimal adaptive performance is

This direction has been mainly pursued in deterministic worst-case ‘

frameworks. For an explorative exposure to the basic theory of identifi- n =26

cation and adaptive control, the reader is referred to the books [1]-]

and the references therein. The deterministic counterpart of the resu ||_e the nominal performance ca_nnot be achleved n practn_:e, due to
of this note is reported in [5]. Inevitable measurement errors, this bound will serve as an important

benchmark for understanding the inherent complexity of adaptive con-
trol.

1. PROBLEM FORMULATION IV. ROBUST CONTROL
Consider a first-order system Suppose that the prior informatidi (a(¢)) can be expressed as

a(t) = ao(t) + v(t), vi>1
y(t) = a@®y(t — 1) + u(t) + w(t), teN (@)} ) o o .

) ( ) where aq(t) is known a priori and deterministic.{v(¢)} is an
, , o ’ . independent random process wiffw(t) = 0, Evi(t) = £2,
e s 15 e, UL, UL P2 i e f 1) Due o he cprcence (1)

’ P Y 9 981110 additional information ona(t) can be extracted from the

{w(t), t € N} is an independent random sequence V#ith(t) = 0

and Euw?(t) = 6%, The system parametdu(t), t € A’} is also a values of {a(t — 1)./’ ..., a(0)} or input/output observations
random sequence which is independent of the npisg), t € A} {u(0), ..., u(t = 1), y(0), ..., y(t = 1)} up tot — L. As a resul,
d P 2ol To(a(t)) = Zo(alt)), T =1, 2, ..., t — 1. It follows that adaptation

Further information ona(¢) will be specified later. For causality
of control actions,u(¢) is limited to be a function of the data
{w(0), ..., u(t — 1), y(0), ..., y(t — 1)} and information oru(t)
available at — 1.

Our control goal is to minimize the effect of the disturbance

is not applicable and robust control becomes the only viable option.
Theorem 1: Suppose{v(t)} is an independent random sequence,
and independent dfw(t)}.

4) For any causal control sequenfe(t)}

on y. Namely, Ey*(t) is to be reduced. I_:or reasons \_Nhich will Ey*(t) > 2By’ (t — 1) + 6°.
become clear shortly, we employ the transient and persistent perfor-
mancesup,-, Fy>(t), in contrast to the asymptotic performance Moreover the inequality becomes an equality when
limsup, . Ey*(t). U(t) = —ao(t)y(t — 1).
Control strategies can be devised on the basis of available informa-5) Ey*(t) is uniformly bounded if and only if < 1. When= < 1,
tion on the plant parametert). Depending on the available informa- y(0) = 0as., andi(t) = —ao(t)y(t — 1)
tion ona(t) and its utility in designing contral(¢), we may introduce 52
distinctively the notion of nominal control, robust control and adaptive n"=1_=
control as follows.
For agivert > 0, letZ, (a(t)) denote the information om(t) avail- Proof:
able attimer, 7 =0, 1, ..., t— 1. In particularZ, (a(t)) is the prior 4) Note that in this case, the data available to design is only
information ona(t). Dy-1 = {ao(t), ao(7), y(7), u(r),0 < 7 < t — 1}. This

implies thatu(t) € F:—, whereF; denotes the -algebra gen-

4) If 7,— t)) contains a single value, (¢), namely, no uncer-
) =1 (a(t)) g e (1) 4 erated by dat®,. Hence

tainty ona(t), then the corresponding control design and per-
formance are calledominal design and nominal performance Eu(t)y(t — Dw(t) =0,
While nominal performance does not have practical value, it is

used in this note as a benchmark value to assess adaptive perfor- Elao(t)y(t — 1) + u(t)]w(t) =0
mance.

5) If the prior informationZ, (a(t)) cannot be further improved in Ev®)y(t = Dao(Hy(t = 1)+ u(t)] =0
the time intervalr = 1,2, ..., ¢ — 1, namely,Zo(a(t)) = and
Ii(a(t)) = --- = Zy—1(a(t)), thenu(t) can only be designed ) Y
on the basis of (a(t)), which will be calledrobust control Ey™(t) = E{o(t)y(t = 1) + (a0()y(t = 1) + u(t)) + w(®)}"

6) If Zr(a(t)), 7 = 1,2,...,t — 1, improvesZy(a(t)), then — Elo(t)y(t — 1))?
it is possible to designi(#) based on the better information ’

T,—1(a(t)). In this case, the design is calladaptive design + Elao(H)y(t — 1) + u(®)]* + Elw(t))’
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+ 2E0(t)y(t — D[ao(t)y(t — 1) + u(t)]
+ 2Ev(t)y(t — Dw(?)
+ 2E[ao(t)y(t — 1) + u(t)]w(t)
= Blo(t)y(t = V)] + Blao(t)y(t — 1) + u(t)]* + 6
> Ely(t— D]? +6°.

The inequality becomes an equality whéifuo (t)y(t — 1) +
u(t)]* = 0. Hence,u(t) = —ao(t)y(t — 1) is the optimal
control.

5) Under the optimal control

Ey*(t) = Ely(t = 1)]° + 6°

is a dynamic system o&y”(t) which is stable if and only if
£ < 1. Whene < 1 andy(0) = 0 a.s.

. 62 (1 — %
="

.....

This implies that

O

From the necessary and sufficient conditior< 1, it is clear that
since robust control does not utilize any further information on the d
namics of:(t) beyondZ, (a(t)), it cannot deal with large uncertainties.

V. ADAPTIVE CONTROL

Adaptation becomes applicable if further information akdj can
be obtained from the past dafa(7), y(7), u(7), 0 < 7 < ¢ — 1}.
Here, we shall investigate two situations.

In the first situationa(¢) evolves fromu(t — 1) by

a(t)y =a(t — 1)+ v(t). 2

a(t — 1) is accurately measured after 1 but prior tot. v has zero
mean and variance’. v represents time-variation andis a measure
of variation rate.

Observe that the informatiah. (a(t)) can be expressed as

a(t) =a(7) +d(t, 7), 7=0,1,....,t—-1

with d(t, 7) = Zf:T_H v(iy andE d*(t, ) = (t — 7)~*. Clearly,
the uncertainty decreases with In particular, the prior information
To(a(t)) is

a(0) + d(t, 0)

with E d*(t, 0) = t+2. For larget, this represents very large uncer
tainty. By Theorem 1, robust control, which usega(t)) only, is not

capable of dealing with such type of uncertainties. On the other hanoi,i
will be shown that adaptation, which employs the newest information
Z:—1(a(t)), can provide satisfactory control. From this point of view,
it is much more powerful than robust control in dealing with such un-

certainties.

Furthermore, it will be revealed that the capability of adaptation
limited by the maximum allowable variation rate This is one evi-
dence that without further information on parameter evolution, adap
tion can only deal with slowly varying systems.

In the second case(t) still evolves froma(t — 1) by

a(t)y=a(t = 1)+ v(t) 3

1139

but no further assumption is made af¥ — 1). In other words, we
are dealing with a random walk model. Only information about the
parameter evolution is its variation rate On the other hand, some
information ona(¢ — 1) can be obtained from the dagé — 1), y(t —

2), u(t — 1) via system identification.

A. Gain Scheduling: Slowly Varying Systems with Noisy Parameter
Measurements

Suppose thai(t) anda(t — 1) are related by (2).

Theorem 2: Suppose{v(¢)} and{w(¢)} are independent random
sequences and independent of each other, with zero mean and variances
+? andé?, respectively.

4) For any causal control sequenje(t)}

Ey*(t) > ¥ Ey°(t — 1) + 6°.

Moreover, the inequality becomes an equality whén) =
—a(t — Dy(t —1).
5) Ey?(t) is uniformly bounded if and only i < 1. Whenv < 1,
y(0) = 0a.s., andu(t) = —a(t — 1)y(t — 1)

{52

1—+2°

n=

Proof: Comparing
a(t) =a(t— 1)+ v(t)

with the case of robust control, it is apparent that it is equivalent to
Ye information in robust control with(¢) as the noise, which is zero
mean, variance and independent af. As a result, Theorem 2 can be
proved with similar arguments and derivations to those in the proof of
Theorem 1. O

Theorem 2 demonstrates an interesting interpretation of time-varia-
tion. While it is intuitively understood that time variation of a system
introduces additional uncertainty on the system, it is usually very dif-
ficult to quantify this perception. Due to the simple structure of the
systems involved here, the uncertainty on time variation measured by
the ratey contributes exactly to the total uncertainty which feedback
control must tolerate.

B. Slowly Varying Systems Without Direct Parameter Measurements

Now we study the case where the only informatiorugt) is given
by (3) and its variation rate. In this case, it becomes mandatory that
a(t — 1) be identified via input—output observation& — 1), y(¢ —

2), u(t — 1). As a result, controk(¢ — 1) must play dual roles of
identification and control. Some fundamental issues arise: What are
the inherent tradeoff between identification and control in this case?
What is the best achievable performance? The following conditions are
imposed at the outset to facilitate analysis.

Assumption 1:{w(t)} and {v(t)} are independent random
sequences and independent of each othét) # 0 a.s.;Ew(t) =
Fu?(t) = Bv(t) = 0, Ew?(t) = 6,6 > 0, sup,~, Ew(t) < oc;
ri][dE’Uz(t) =+ <1 B
Assumption 2:y(0) = 0 a.s.u(t) € F;—(, whereF; is thes-al-
gebra generated by (7), u(7), 0 < 7 < ¢}.

' Theorem 3: In addition to Assumptions 1-2, suppose that the esti-
matedi(t — 1) of a(t — 1) is given by the following least-mean-squares
%Igorithm:

a(t—1)=argminE(y(t — 1) —ay(t —2) —u(t — 1))>  (4)
ta- a
and the controk(t) is designed based on the minimum variance cost

function E4*(¢) and the certainty equivalence principle

u(t) = —a(t = y(t - 1). (5)
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Then This and (9) imply that

sup Ey(t)2 1+ Vo—497 . (6) E(a(t — 1)y(t - 1))2
£>1 2(1 - ~2)

2

= Fw (7‘— D(a(t =Dyt —2)+u(t—1))"
Proof: By w(t) # 0 a.s. andu(#) is independent of (¢)y(t —

p 2 —_ p ,' —_ 2 —_
1) + u(t), we have thay(t) # 0 a.s. for allt > 1. Thus, from (4), it [yt =2)+ Ew'(t = 1)/y*(t — 2)

follows: > EBw*(t—1)/y*(t = 2)
ar—1) =2 _fj()f__l-lz(; “D as. wixs, = Bu'(t=1)Ey~"(t = 2)
' > 8By (t—2) 2 0" [Ey’(t—2)] (10)

or equivalently

where we have usett = (Bw?(t — 1)) < Ew*(t — 1) and the fact
that for any random variable, 1 < (Ex? )(Ef:"), or equivalently,
(Ex*)™' < Ex™2.

y(t—1) =at—1Dy(t—2)+u(t-1), as. Vt>3

which, together with (1), gives(t — 1)y(t — 2) = —w(t — 1), a.s, or = )
equivalently Substituting (10) into (8) we have
s n/z ) 2 —
it—1) = —wt—1yt—2)"",as Vi>3 (7 By (t) 27" Ey (t = 1)

4 2 —1 2
wherei(t — 1) = a(t — 1) — a(t — 1). HOEy(F =2 0% as Vi3 (1)

Observing that from (1) Letye = sup,~, Ey(t). Then from (11) it follows that:

y(@) =v(yt—1)+alt = Dyt — 1)+ u(t) + w(t) sup By (1) > Ey*(t— 1) + 67yl + 6% as. Vi >3
t>2
and from Assumptions 1-2 B
This in turn gives
Bu(t)y(t = 1)(a(t = Ly(t = 1) + u(t)) =0, , . s
sup By~ (t) > 7" sup By (1) + 8 yoe +6

Ev(t)y(t— Dw(t) =0 1>2 >2
E(a(t — Dy(t — 1) + u(t))w(t) =0. or equivalently
4 —1 2
Therefore sup Ey’(t) > 8y -25 . (12)
1>2 I—7v
Ey*(t) = E*(Hy*(t—1)
) ) If (6) were not true, i.e.,
+ E(a(t — L)y(t — 1) + u(t))” + 6
1+ 4/5—4+2
2Byt — 1)(alt — D)y(t — 1) + u()) v < 5 i = ! (13)
+2Ev(t)y(t = Dw(t) then, by (12), we would have
+2E(a(t = Dy(t = 1) + u(t))w(t) 2(1 = %) .
_2p 2 , N2 <2 5415—)425_2‘1'52
=7y"EBy"(t— 1)+ E(a(t — Dyt — 1)+ u(t)"+6 sup By2(1) > (1++/5— 32)
= Ey’(t— 1)+ E(a(t — 1)y(t —1))* 48 8) 822 *
wherea(t — 1)y(t — 1) + u(t) = 0 has been used. _1 —;d i_ J;M
By (7) K
. 5 This implies
E(a(t—1)y(t-1))
- /2
= Elw(t=1)y(t—1)/y(t—2) v > sup By?(n) > LEVO 47
1>2 2(1—+2)
p— Nan — — _° 7 — w — J— 2
= Elw@t=D(at-Ly(t=2)+ u(t-1) +w{t-1)/y(t-2)] This contradicts (13). Thus, (6) is true. O
= Bw’(t=1)(a(t=1)y(t=2)+ u(t—1))*/y*(t=2) Remarks:

4) Assumptions 1-2 are standard, which are satisfied by a broad

+2Ew’ (t=1)(a(t—1)y(t—2)+ u(t—1))/y*(t-2) class of{w(t)} and{a(t)}. For instance{w(t)} can be i.i.d.

+ Ew'(t—1)/y>(t—2). (9) random sequences with normal or uniform distributigrs) }
can be constanty( = 0); or a(t) = Y\_, &(4) with {£(¢)}
From Assumption 1 it follows thaBw?®(t — 1) = 0 andw(t — 1) is being an independent random sequence itf{tr) = 0 and
independent ofa(t — 1)y(t — 2) +u(t — 1)) /y*(t — 2). This implies B (t) = +* < 1.
5) In adaptive control, the optimal performance is bounded below

2 P
Buw®(t = 1)(a(t = D)y(t = 2) + u(t = 1)) /y*(t = 2) by ((1+ +/5)/2)é* and does not approach the nominal perfor-
— Ew®(t = DE(a(t — Dy(t — 2) + a(t — 1)) /y2(t — 2) mances?, even wheny — 0 'I_'his discontinu_ity reve_als a fun-
damental performance limitation caused by interactions between
=0. identification and control.
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The bounds in Theorem 3 can be further improved if additional imf an adaptive control strategy. By using a simple first-order linear
formation on noise distributions become available. These are presertiatk-varying system as a platform, we are able to explore these issues
in the following. rigorously, derive exact performance limits and demonstrate these ideas

Corollary 1: quantitatively. Extension of the findings of this paper to more compli-

4) In addition to the hypothesis of Theorem 3{if(¢)} isi.i.d.and cated systems is currently under investigation.
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sential importance in our understanding of the capability and limit§duivalent to the existence of a solution to the problem: for any ini-
tions of robust and adaptive control. The key observations in this pii2 Statez(fo) € H, there exists an input function( - ) defined on
suit are: 1)without using online information, robust control can provide
only very limited capability in dealing with uncertainty; 2) time varia- Manuscript received April 28, 1999; revised February 15, 2000 and
tion of a system introduces additional uncertainty and further redudgevember 5, 2000. Recommended by Associate Editor B. Chen.
the power of robustness against other uncertainties; 3) employing ad?&]g'%gii%”gg?niz "‘I’t'gl‘ ”(‘g r'?;ﬁ?&tg;g:(t@?]‘;gﬂtﬁ;hgemg?ﬁ?irTqur:;JiSiverSity of
ditional lnfo.rmatlon onthe dynamlc? of system pallrar_neters, _adaptat . D’e Santis is Wit’h thg Department of Electrical Engineering, University of
can dramatically enhance a system’s robustness; 4)interaction betweguila, 67040 L'Aquila, Italy (e-mail: desantis@ing.univag.it).
identification and control fundamentally limits achievable performance Publisher Item Identifier S 0018-9286(01)06604-1.
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