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Performance Lower Bounds in Stochastic Robust and
Adaptive Control

Ji Feng Zhang and Le Yi Wang

Abstract—The fundamental issues of capability of robust and adaptive
control in dealing with uncertainty are investigated in stochastic systems.
It is revealed that to capture the intrinsic limitations of adaptive control,
it is necessary to usesup types of transient and persistent performance,
rather than lim sup types which reflect only asymptotic behavior of a
system. For clarity and technical tractability, a simple first-order linear
time-varying system is employed as a vehicle to explore performance lower
bounds of robust and adaptive control. Optimal performances of nominal,
robust and adaptive control are explicitly derived and their implications are
discussed in an information framework. An adaptive strategy is scrutinized
for its achievable performance bounds. The results indicate that intimate
interaction and inherent conflict between identification and control result
in a certain performance lower bound which does not approach the nom-
inal performance even when the system varies very slowly. Explicit lower
bounds are obtained when disturbances are either normally or uniformly
distributed.

Index Terms—Adaptive control, performance lower bounds, robust con-
trol, Stochastic system, time-varying parameter, uncertainty.

I. INTRODUCTION

This note studies the long-standing and intricate questions: What
is the inherent impact of interactions between identification and con-
trol in adaptation? Can adaptive control provide much larger capability
in dealing with uncertainty? How can we quantify the impact of time
variation on system robustness and achievable performance? Although
there are many intuitions and research findings which provide guide-
lines in pursuing answers to these questions, clear and quantifiable
conclusions on these questions are well known to be extremely dif-
ficult. Some of these technical difficulties are inherent: To understand
essential capability and fundamental limitations of robust and adap-
tive control, one must obtain either optimal or at least lower perfor-
mance bounds. In addition, these issues are mostly imminent only in a
system’s transient and persistent performance, in contrast to asymptotic
performance. Knowing that derivations of upper bounds of asymptotic
performance of a fixed adaptation algorithm have been painfully diffi-
cult, one can perceive the challenges involved in pursuing lower bounds
of transient and persistent performance over all possible adaptive algo-
rithms.

As a compromise, in this note we employ a first-order linear time-
varying stochastic system as a vehicle to explore these issues. Optimal
performances of nominal, robust and adaptive control are explicitly de-
rived and their implications are discussed in an information framework.
In particular, it is shown that when no information on parameter evolu-
tion is available, adaptation is not applicable and robust control, which
is designed on the basis of prior information, can only provide very
limited robustness against plant uncertainty. On the other hand, when
plant parameters vary relatively slowly, adaptation can be employed to
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dramatically enhance robustness. An adaptive control strategy, which
utilizes least-mean-squares identification, certainty equivalence princi-
ples, and optimal disturbance attenuation, is investigated for its achiev-
able performance bounds. The results indicate that intimate interaction
and inherent conflict between identification and control result in a cer-
tain performance lower bound which does not approach the nominal
performance even when the system varies very slowly. This finding,
somehow surprising, is a clear indication that information acquisition
and processing are indeed inherently intertwined. Explicit and tighter
lower bounds are obtained when disturbances are either normally or
uniformly distributed.

Deriving optimal or lower bounds on system performance in the
presence of uncertainty is one of the main thrusts in information and
complexity based theory of feedback, identification and adaptation.
This direction has been mainly pursued in deterministic worst-case
frameworks. For an explorative exposure to the basic theory of identifi-
cation and adaptive control, the reader is referred to the books [1]–[4],
and the references therein. The deterministic counterpart of the results
of this note is reported in [5].

II. PROBLEM FORMULATION

Consider a first-order system

y(t) = a(t)y(t� 1) + u(t) + w(t); t 2 N (1)

whereu(t), y(t), a(t) andw(t) are system input, output, parameter
and noise, respectively, andN is the set of nonnegative integers.
fw(t); t 2 Ng is an independent random sequence withEw(t) = 0
andEw2(t) = �2. The system parameterfa(t); t 2 Ng is also a
random sequence which is independent of the noisefw(t); t 2 Ng.
Further information ona(t) will be specified later. For causality
of control actions,u(t) is limited to be a function of the data
fu(0); . . . ; u(t � 1); y(0); . . . ; y(t � 1)g and information ona(t)
available att � 1.

Our control goal is to minimize the effect of the disturbancew

on y. Namely, Ey2(t) is to be reduced. For reasons which will
become clear shortly, we employ the transient and persistent perfor-
mancesup

t�1 Ey2(t), in contrast to the asymptotic performance
lim sup

t!1 Ey2(t).
Control strategies can be devised on the basis of available informa-

tion on the plant parametera(t). Depending on the available informa-
tion ona(t) and its utility in designing controlu(t), we may introduce
distinctively the notion of nominal control, robust control and adaptive
control as follows.

For a givent > 0, letI� (a(t)) denote the information ona(t) avail-
able at time� , � = 0; 1; . . . ; t� 1. In particular,I0(a(t)) is the prior
information ona(t).

4) If It�1(a(t)) contains a single valuea0(t), namely, no uncer-
tainty ona(t), then the corresponding control design and per-
formance are callednominal design and nominal performance.
While nominal performance does not have practical value, it is
used in this note as a benchmark value to assess adaptive perfor-
mance.

5) If the prior informationI0(a(t)) cannot be further improved in
the time interval� = 1; 2; . . . ; t � 1, namely,I0(a(t)) =
I1(a(t)) = � � � = It�1(a(t)), thenu(t) can only be designed
on the basis ofI0(a(t)), which will be calledrobust control.

6) If I� (a(t)), � = 1; 2; . . . ; t � 1, improvesI0(a(t)), then
it is possible to designu(t) based on the better information
It�1(a(t)). In this case, the design is calledadaptive design.

These concepts will be made concrete and accurate in the subsequent
sections. In each of these cases we will focus on deriving lower bounds
on the optimal disturbance attenuation

� = inf
fu(t)g

sup
t�1

Ey
2(t):

For a random processfx(t); t � 0g, the simplified notationx =
fx(t)g = fx(t); t � 0g will often be used.

III. N OMINAL PERFORMANCE

If a(t) can be directly and accurately measured prior to designing
the control actionu(t), then there is no uncertainty on the system pa-
rameters and the optimal control can be trivially obtained asu(t) =
�a(t)y(t� 1). The corresponding optimal adaptive performance is

� = �
2
:

While the nominal performance cannot be achieved in practice, due to
inevitable measurement errors, this bound will serve as an important
benchmark for understanding the inherent complexity of adaptive con-
trol.

IV. ROBUST CONTROL

Suppose that the prior informationI0(a(t)) can be expressed as

a(t) = a0(t) + v(t); 8 t � 1

where a0(t) is known a priori and deterministic.fv(t)g is an
independent random process withEv(t) = 0, Ev2(t) = "2,
and is independent offw(t)g. Due to the independence offv(t)g
no additional information ona(t) can be extracted from the
values of fa(t � 1); . . . ; a(0)g or input/output observations
fu(0); . . . ; u(t � 1); y(0); . . . ; y(t � 1)g up to t � 1. As a result,
I� (a(t)) = I0(a(t)), � = 1; 2; . . . ; t� 1. It follows that adaptation
is not applicable and robust control becomes the only viable option.

Theorem 1: Supposefv(t)g is an independent random sequence,
and independent offw(t)g.

4) For any causal control sequencefu(t)g

Ey
2(t) � "

2
Ey

2(t� 1) + �
2
:

Moreover the inequality becomes an equality when
u(t) = �a0(t)y(t � 1).

5) Ey2(t) is uniformly bounded if and only if" < 1. When" < 1,
y(0) = 0 a.s., andu(t) = �a0(t)y(t� 1)

� =
�2

1� "2
:

Proof:

4) Note that in this case, the data available to designu(t) is only
Dt�1 = fa0(t); a0(�), y(�), u(�), 0 � � � t � 1g. This
implies thatu(t) 2 Ft�1, whereFt denotes the�-algebra gen-
erated by dataDt. Hence

Ev(t)y(t� 1)w(t) = 0;

E[a0(t)y(t� 1) + u(t)]w(t) = 0

Ev(t)y(t� 1)[a0(t)y(t� 1) + u(t)] = 0

and

Ey
2(t) =Efv(t)y(t� 1) + (a0(t)y(t� 1) + u(t)) + w(t)g2

=E[v(t)y(t� 1)]2

+ E[a0(t)y(t� 1) + u(t)]2 +E[w(t)]2
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+ 2Ev(t)y(t� 1)[a0(t)y(t� 1) + u(t)]

+ 2Ev(t)y(t� 1)w(t)

+ 2E[a0(t)y(t� 1) + u(t)]w(t)

=E[v(t)y(t� 1)]2 +E[a0(t)y(t� 1) + u(t)]2 + �
2

� "
2
E[y(t� 1)]2 + �

2
:

The inequality becomes an equality whenE[a0(t)y(t � 1) +
u(t)]2 = 0. Hence,u(t) = �a0(t)y(t � 1) is the optimal
control.

5) Under the optimal control

Ey
2(t) = "

2
E[y(t� 1)]2 + �

2

is a dynamic system onEy2(t) which is stable if and only if
" < 1. When" < 1 andy(0) = 0 a.s.

Ey
2(t) =

�2(1� "2t)

1� "2
; t = 1; 2; . . . :

This implies that

� =
�2

1� "2
:

From the necessary and sufficient condition" < 1, it is clear that
since robust control does not utilize any further information on the dy-
namics ofa(t) beyondI0(a(t)), it cannot deal with large uncertainties.

V. ADAPTIVE CONTROL

Adaptation becomes applicable if further information abouta(t) can
be obtained from the past datafa(� ); y(�); u(�); 0 � � � t � 1g.
Here, we shall investigate two situations.

In the first situation,a(t) evolves froma(t� 1) by

a(t) = a(t� 1) + v(t): (2)

a(t � 1) is accurately measured aftert � 1 but prior tot. v has zero
mean and variance
2. v represents time-variation and
 is a measure
of variation rate.

Observe that the informationI� (a(t)) can be expressed as

a(t) = a(�) + d(t; � ); � = 0; 1; . . . ; t� 1

with d(t; �) = t

i=�+1
v(i) andE d2(t; �) = (t � � )
2. Clearly,

the uncertainty decreases with� . In particular, the prior information
I0(a(t)) is

a(0) + d(t; 0)

with E d2(t; 0) = t
2. For larget, this represents very large uncer-
tainty. By Theorem 1, robust control, which usesI0(a(t)) only, is not
capable of dealing with such type of uncertainties. On the other hand, it
will be shown that adaptation, which employs the newest information
It�1(a(t)), can provide satisfactory control. From this point of view,
it is much more powerful than robust control in dealing with such un-
certainties.

Furthermore, it will be revealed that the capability of adaptation is
limited by the maximum allowable variation rate
. This is one evi-
dence that without further information on parameter evolution, adapta-
tion can only deal with slowly varying systems.

In the second case,a(t) still evolves froma(t� 1) by

a(t) = a(t� 1) + v(t) (3)

but no further assumption is made ona(t � 1). In other words, we
are dealing with a random walk model. Only information about the
parameter evolution is its variation rate
. On the other hand, some
information ona(t� 1) can be obtained from the datay(t� 1); y(t�
2); u(t � 1) via system identification.

A. Gain Scheduling: Slowly Varying Systems with Noisy Parameter
Measurements

Suppose thata(t) anda(t� 1) are related by (2).
Theorem 2: Supposefv(t)g andfw(t)g are independent random

sequences and independent of each other, with zero mean and variances

2 and�2, respectively.

4) For any causal control sequencefu(t)g

Ey
2(t) � 


2
Ey

2(t� 1) + �
2
:

Moreover, the inequality becomes an equality whenu(t) =
�a(t � 1)y(t � 1).

5) Ey2(t) is uniformly bounded if and only if
 < 1. When
 < 1,
y(0) = 0 a.s., andu(t) = �a(t� 1)y(t� 1)

� =
�2

1� 
2
:

Proof: Comparing

a(t) = a(t� 1) + v(t)

with the case of robust control, it is apparent that it is equivalent to
the information in robust control withv(t) as the noise, which is zero
mean, variance
 and independent ofw. As a result, Theorem 2 can be
proved with similar arguments and derivations to those in the proof of
Theorem 1.

Theorem 2 demonstrates an interesting interpretation of time-varia-
tion. While it is intuitively understood that time variation of a system
introduces additional uncertainty on the system, it is usually very dif-
ficult to quantify this perception. Due to the simple structure of the
systems involved here, the uncertainty on time variation measured by
the rate
 contributes exactly to the total uncertainty which feedback
control must tolerate.

B. Slowly Varying Systems Without Direct Parameter Measurements

Now we study the case where the only information ona(t) is given
by (3) and its variation rate
. In this case, it becomes mandatory that
a(t � 1) be identified via input–output observationsy(t � 1); y(t �
2); u(t � 1). As a result, controlu(t � 1) must play dual roles of
identification and control. Some fundamental issues arise: What are
the inherent tradeoff between identification and control in this case?
What is the best achievable performance? The following conditions are
imposed at the outset to facilitate analysis.

Assumption 1:fw(t)g and fv(t)g are independent random
sequences and independent of each other;w(t) 6= 0 a.s.;Ew(t) =
Ew3(t) = Ev(t) = 0, Ew2(t) = �2, � > 0, sup

t�0 Ew4(t) < 1;
andEv2(t) = 
2 < 1.

Assumption 2:y(0) = 0 a.s.u(t) 2 Ft�1, whereFt is the�-al-
gebra generated byfy(�); u(�); 0 � � � tg.

Theorem 3: In addition to Assumptions 1–2, suppose that the esti-
mateâ(t�1) of a(t�1) is given by the following least-mean-squares
algorithm:

â(t� 1) = argmin
a

E(y(t� 1)� ay(t� 2)� u(t� 1))2 (4)

and the controlu(t) is designed based on the minimum variance cost
functionEy2(t) and the certainty equivalence principle

u(t) = �â(t� 1)y(t� 1): (5)



1140 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 7, JULY 2001

Then

sup
t�1

Ey(t)2 � 1 + 5� 4
2

2(1� 
2)
�2: (6)

Proof: By w(t) 6= 0 a.s. andw(t) is independent ofa(t)y(t �
1) + u(t), we have thaty(t) 6= 0 a.s. for allt � 1. Thus, from (4), it
follows:

â(t� 1) =
y(t� 1)� u(t� 1)

y(t� 2)
; a.s. 8 t � 3;

or equivalently

y(t� 1) = â(t� 1)y(t� 2) + u(t� 1); a.s. 8 t � 3

which, together with (1), gives~a(t� 1)y(t� 2) = �w(t� 1), a.s, or
equivalently

~a(t� 1) = �w(t� 1)y(t� 2)�1; a.s. 8 t � 3 (7)

where~a(t � 1) = a(t � 1) � â(t � 1).
Observing that from (1)

y(t) = v(t)y(t� 1) + a(t� 1)y(t� 1) + u(t) + w(t)

and from Assumptions 1–2

Ev(t)y(t� 1)(a(t� 1)y(t� 1) + u(t)) = 0;

Ev(t)y(t� 1)w(t) = 0

E(a(t� 1)y(t� 1) + u(t))w(t) = 0:

Therefore

Ey2(t) =Ev2(t)y2(t� 1)

+E(a(t� 1)y(t� 1) + u(t))2 + �2

+ 2Ev(t)y(t� 1)(a(t� 1)y(t� 1) + u(t))

+ 2Ev(t)y(t� 1)w(t)

+ 2E(a(t� 1)y(t� 1) + u(t))w(t)

= 
2Ey2(t� 1) +E(a(t� 1)y(t� 1) + u(t))2 + �2

= 
2Ey2(t� 1) +E(~a(t� 1)y(t� 1))2 + �2 (8)

whereâ(t� 1)y(t� 1) + u(t) = 0 has been used.
By (7)

E(~a(t�1)y(t�1))2

= E[w(t�1)y(t�1)=y(t�2)]2

= E[w(t�1)(a(t�1)y(t�2)+ u(t�1) + w(t�1))=y(t�2)]2

= Ew2(t�1)(a(t�1)y(t�2)+ u(t�1))2=y2(t�2)

+ 2Ew3(t�1)(a(t�1)y(t�2)+ u(t�1))=y2(t�2)

+Ew4(t�1)=y2(t�2): (9)

From Assumption 1 it follows thatEw3(t� 1) = 0 andw(t� 1) is
independent of(a(t� 1)y(t� 2)+u(t� 1))=y2(t� 2). This implies

Ew3(t� 1)(a(t� 1)y(t� 2) + u(t� 1))=y2(t� 2)

= Ew3(t� 1)E(a(t� 1)y(t� 2) + u(t� 1))=y2(t� 2)

= 0:

This and (9) imply that

E(~a(t� 1)y(t� 1))2

= Ew2(t� 1)(a(t� 1)y(t� 2) + u(t� 1))2

=y2(t� 2) + Ew4(t� 1)=y2(t� 2)

� Ew4(t� 1)=y2(t� 2)

= Ew4(t� 1)Ey�2(t� 2)

� �4Ey�2(t� 2) � �4 Ey2(t� 2)
�1

(10)

where we have used�4 = (Ew2(t� 1))2 � Ew4(t� 1) and the fact
that for any random variablex, 1 � (Ex2)(Ex�2), or equivalently,
(Ex2)�1 � Ex�2.

Substituting (10) into (8) we have

Ey2(t) � 
2Ey2(t� 1)

+ �4[Ey2(t� 2)]�1 + �2; a.s. 8 t � 3: (11)

Let y1 = sup
t�1 Ey(t)2. Then from (11) it follows that:

sup
t�2

Ey2(t) � 
2Ey2(t� 1) + �4y�11 + �2; a.s. 8 t � 3:

This in turn gives

sup
t�2

Ey2(t) � 
2 sup
t�2

Ey2(t) + �4y�11 + �2

or equivalently

sup
t�2

Ey2(t) � �4y�11 + �2

1� 
2
: (12)

If (6) were not true, i.e.,

y1 <
1 + 5� 4
2

2(1� 
2)
�2 (13)

then, by (12), we would have

sup
t�2

Ey2(t) �
�4

2(1� 
2)

(1 + 5� 4
2)
��2 + �2

1� 
2

=
1+ 5� 4
2

2(1� 
2)
�2:

This implies

y1 � sup
t�2

Ey2(t) � 1 + 5� 4
2

2(1� 
2)
�2:

This contradicts (13). Thus, (6) is true.
Remarks:

4) Assumptions 1–2 are standard, which are satisfied by a broad
class offw(t)g andfa(t)g. For instance,fw(t)g can be i.i.d.
random sequences with normal or uniform distributions.fa(t)g
can be constant (
 = 0); or a(t) = t

i=0
�(i) with f�(t)g

being an independent random sequence withE�(t) = 0 and
E�2(t) = 
2 < 1.

5) In adaptive control, the optimal performance is bounded below
by ((1 +

p
5)=2) �2 and does not approach the nominal perfor-

mance�2, even when
 ! 0. This discontinuity reveals a fun-
damental performance limitation caused by interactions between
identification and control.
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The bounds in Theorem 3 can be further improved if additional in-
formation on noise distributions become available. These are presented
in the following.

Corollary 1:

4) In addition to the hypothesis of Theorem 3, iffw(t)g is i.i.d. and
normally distributed, then

� � 1 + 13� 12
2

2(1� 
2)
�
2
> 2:3�2; for all 
 2 [0; 1): (14)

5) In addition to the hypothesis of Theorem 3, iffw(t)g is i.i.d. and
uniformly distributed, then

� � 1 + 8:2� 7:2
2

2(1� 
2)
�
2
> 1:9�2; for all 
 2 [0; 1): (15)

Proof:

4) In the case wherefw(t)g is i.i.d. and normally distributed with
Ew(t) = 0 andEw2(t) = �2, the corresponding density func-
tion is

fw(x) =
1

�
p
2�

exp � x2

2�2
:

Hence, we haveEw4(t � 1) = 3�4. Applying this, instead of
Ew4(t� 1) � �4, to (10), we get

sup
t�2

Ey
2(t) � 3�4y�11 + �2

1� 
2

from which and

1 + 13� 12
2

2(1� 
2)
� 1 +

p
13

2
> 2:3

for all 
 2 [0; 1) we can prove (14) by contradiction.
5) In the case wherefw(t)g is i.i.d. and uniformly distributed with

Ew(t) = 0 andEw2(t) = �2, the corresponding density func-
tion is

fw(x) =

1

2
p
3�
; if x 2 �p3�;

p
3�

0; otherwise.

Hence, we haveEw4(t� 1) = 1:8�4. Applying this, instead of
Ew4(t� 1) � �4, to (10), we get

sup
t�2

Ey
2(t) � 1:8�4y�11 + �2

1� 
2

from which and

1 + 8:2� 7:2
2

2(1� 
2)
� 1 +

p
8:2

2
> 1:9

for all 
 2 [0; 1) we can prove (15) by contradiction.

VI. CONCLUSION

Performance lower bounds of robust and adaptive control are of es-
sential importance in our understanding of the capability and limita-
tions of robust and adaptive control. The key observations in this pur-
suit are: 1)without using online information, robust control can provide
only very limited capability in dealing with uncertainty; 2) time varia-
tion of a system introduces additional uncertainty and further reduces
the power of robustness against other uncertainties; 3) employing ad-
ditional information on the dynamics of system parameters, adaptation
can dramatically enhance a system’s robustness; 4)interaction between
identification and control fundamentally limits achievable performance

of an adaptive control strategy. By using a simple first-order linear
time-varying system as a platform, we are able to explore these issues
rigorously, derive exact performance limits and demonstrate these ideas
quantitatively. Extension of the findings of this paper to more compli-
cated systems is currently under investigation.
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Controlled Invariance and Feedback Laws

P. d’Alessandro and E. De Santis

Abstract—We consider controlled invariance for cones, translated cones,
polyhedra and various special polyhedral structures. For any polyhedron,
if controlled invariance occurs, then all and nothing but the admissible con-
trols can be obtained by an inequative feedback controller. For each special
polyhedral structure we compare this feedback controller against piecewise
affine, linear and affine feedback controller.

Index Terms—Discrete-time systems, state feedback.

I. INTRODUCTION

We consider linear dynamic time-invariant discrete time systems,
which are described by a recursive equation of the form

x(t+ 1) = Ax(t) +Bu(t) (1)

wherex(t) 2 Rn, u(t) 2 Rp, andA andB are matrices of consistent
dimensions. The equation is understood to hold for a givent0—a pa-
rameter that can be any integer and represents the initial time—initial
statex(t0) andt > t0. The statex(t) is recursively determined by the
equation for anyt > t0. Usually, in view of time-invariance, we will
assumet0 = 0 without restriction of generality. A setH in Rn is said
to be controlled invariant under the system if for anyx 2 H 9u such
thatAx + Bu 2 H . Note that if we denote byS the set

S = fx: 9u; Ax +Bu 2 Hg (2)

then invariance prevails if and only ifH � S (throughout the note
the symbol� has the same meaning as the symbol�). This is in turn
equivalent to the existence of a solution to the problem: for any ini-
tial statex(t0) 2 H , there exists an input functionu( � ) defined on
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